If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-438=0
a = 1; b = 3; c = -438;
Δ = b2-4ac
Δ = 32-4·1·(-438)
Δ = 1761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1761}}{2*1}=\frac{-3-\sqrt{1761}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1761}}{2*1}=\frac{-3+\sqrt{1761}}{2} $
| (1+10)/(x+10)=1/2 | | (x+5)/5=5 | | y=38.5/5 | | 4.5+0.2p=4 | | (-3a2+8a–2)–(-4a2–2a+6)=0 | | 3x^2+75x+20=0 | | 45-v=156 | | 3(1.5p+9)-18=9(0.3p)+2 | | 3a+2/2=2^2/5a-1^3/5/4 | | 7y=28y= | | 7-2/3=x-8 | | 7=2/3x=x-8 | | 7-2/3x=x-3 | | 68+(6x+4)=180x=18 | | (4x-2)+48=360 | | (2y+18)+(2y-18)=180 | | 299x^2+2x-3=0 | | (2y+45)+(2y-45)=180 | | (3y-8)9=17y+53 | | (2y+9)+(2y-9)=180 | | 5x+(3x+25)=3x | | 2x/3-9=713/18 | | -6(2x-3)=4x-6 | | -32x+20=-32x+-26 | | 5x+2(x-3)=5x+3(3-x) | | 25.12=3.14×2r | | 12m+9=-16 | | 0.7=5x-24.3 | | 4x3^14=x | | 3+6a=32 | | 3(x)-4=5 | | -2(-9v+6)-5v=3(v-1)-3 |